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Abstract

The wetting behavior at the free (100) surface of a bcc binary alloy exhibiting a

continuous order-disorder transition in the bulk is investigated theoretically, using

a model equivalent to a bcc Ising antiferromagnet in an external magnetic field.

Its salient feature is the generation of an effective ordering surface field , g1 6= 0, for

certain symmetry-breaking surface orientations like (100). Such a field, coupling to

the local order parameter at the surface, does not only crucially affect the surface

critical behavior at bulk criticality, but also leads to the occurrence of wetting

phenomena below the critical temperature Tc. Starting from the mean-field theory

for the lattice model and making a continuum approximation, a suitable Ginzburg-

Landau model is derived. Explicit results for the dependence of its parameters

(e.g., of g1) on the microscopic interaction constants are obtained. Utilizing these

in conjunction with Landau theory, the wetting phase diagram is calculated.

KEY WORDS: antiphase boundary, bcc binary alloys, complete wetting, Landau-

Ginzburg models, noncritical densities, surface critical behavior
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1 Introduction

Surface critical behavior at bulk critical points can be divided into distinct

universality classes [1]. For a given bulk universality class, only gross surface prop-

erties determine which surface universality class applies, such as: whether or not

the surface interactions exceed or are equal to a certain critical enhancement, or

whether a surface field g1 coupling to the local order parameter exists. Recently

it has been shown that the universal critical behavior at the surface of a bcc Ising

antiferromagnet and of a binary alloy undergoing a continuous order-disorder bulk

transition depends crucially on the orientation of the surface with respect to the

crystal axes [2, 3]. The basic mechanism underlying this intriguing behavior is the

interplay between broken translational invariance perpendicular to the surface and

the symmetry with respect to sublattice ordering. For certain “symmetry-breaking”

orientations an “effective” ordering surface field g1 6= 0 emerges, which depends on

physical parameters like temperature and bulk composition of the alloy. That such

a field exists has already been pointed out in [4] in order to explain the persistence

of surface order at a (100) surface above the bulk critical temperature Tc, detected

in a Monte Carlo simulation for the A2–B2 order-disorder transition in Fe–Al.

The situation encountered for symmetry-breaking surfaces closely resembles the

critical adsorption of fluids, where generically g1 6= 0 [5]. However, in that case the

microscopic origin of g1 is quite different: It is an external field reflecting, e. g., the

preference of the wall for one of the two components of the binary liquid mixture.

The transition that takes place at the surface of the system in the presence of a field

g1 6= 0 on approaching the bulk critical point has been called normal in [6]. If g1 = 0

(and the surface interactions are not too strongly enhanced), another transition,

called ordinary , occurs. In accordance with the fact that g1 is a relevant scaling

field, the ordinary and normal transitions represent different surface universality

classes.
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In Refs. [2] and [3] the focus has been on the behavior at T = Tc and a clear

identification of the normal transition, which may also be regarded as a critical

point wetting phenomenon [7]. However, since g1 generally stays nonzero away

from Tc for symmetry-breaking surfaces, a variety of wetting phenomena may occur

for T < Tc. Below we will determine the wetting phase diagram for a (100) surface

within the mean-field approximation, utilizing the continuum model derived in [3].

Our work complements previous studies on wetting in fcc Ising antiferromagnets

or binary alloys [8] as well as on interface roughening at an antiphase boundary in

the [100] direction in bcc binary alloys [9].

The organization of the paper is as follows. In the next section we define our

model, explain the difference between symmetry-breaking and symmetry-preserv-

ing surfaces, and then briefly discuss the discrete mean-field equations (Sec. 2). In

Sec. 3 we introduce the Landau-Ginzburg model for the (100) surface derived in

[3]. This is then used in Sec. 4 to determine the wetting phase diagram.

2 Lattice model

2.1 Definition

To model the continuous A2–B2 order-disorder transition in the binary (AB)

alloys FeAl or FeCo, we consider a bcc Ising antiferromagnet with nearest-neighbor

(NN) interactions of strength J < 0 . The spin variable σi takes the values +1 or

−1 depending on whether lattice site i is occupied by an A or B atom. Within the

grand-canonical ensemble, the Ising Hamiltonian reads:

H = −J
∑
〈i,j〉

σiσj −H
∑
i

σi −H1
∑
i∈surf

σi , (1)

where
∑
〈i,j〉 runs over all NN bonds. The bulk field H serves to adjust the compo-

sition of the alloy and represents the chemical potential difference between A and

B atoms. A nonzero surface field H1 occurs generically in binary alloys, giving rise
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to surface segregation effects. One has H1 > 0 (H1 < 0) if A (B) atoms tend to

segregate at the surface. It is important not to confuse H1 with an “ordering” field,

which couples directly to the local order parameter. Only if H1 distinguishes one

of the two sublattices at the surface, as is the case for symmetry-breaking surface

orientations where the surface sites belong to a single sublattice only (see below),

will H1 contribute to an “effective” ordering field g1. But even then H1 6= 0 is not

a necessary condition for g1 6= 0 (cf. Sec. 3).

The average concentration (or occupation probability) ci of A atoms on lattice

site i can be written in terms of the mean magnetizationmi ≡ 〈σi〉 of spin σi as ci =

1
2
(1+mi). In the ordered (B2) phase, the bcc lattice splits into two interpenetrating

sc sublattices α and β with bulk magnetizations mαb 6= m
β
b , which are preferentially

occupied by A and B atoms, respectively (cf. Fig. 1). The disordered (A2) structure

is characterized by mαb = m
β
b =: mdis. The bulk order parameter is defined by

φb ≡
1

2

(
mαb −m

β
b

)
. (2)

2.2 Symmetry properties of the surface

Let us define more precisely what is meant by symmetry-breaking and sym-

metry-preserving surfaces. Consider a uniform translation ταβ of the crystal lattice

that maps α-sites into β-sites. In an infinite system without free surfaces or a finite

system with periodic boundary conditions, the Hamiltonian H = H{σi}, Eq. (1),

is invariant under the transformation:

σi → σ′i = σi+ταβ . (3)

This symmetry is spontaneously broken below Tc where the mean magnetizations

mαb and m
β
b transform into each other under (3), so that φb → −φb. For a system

with a free surface, the invariance of the Hamiltonian still holds if ταβ can be taken

parallel to the surface as is the case for the (110) orientation (Fig. 1). Then the
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surface is called symmetry-preserving. One may convince oneself that a surface with

Miller indices (n1n2n3) is symmetry-preserving if and only if n1+n2+n3 is even. (By

convention, we use the cubic unit cell of the bcc lattice here.) The order parameter,

which becomes a local quantity φ = φn depending on the discrete layer index n,

vanishes identically above Tc since the φ → −φ symmetry of the bulk system

is retained and no enhanced surface interactions have been admitted in (1). By

contrast, if either one of the lattice planes parallel to the surface belongs to a single

sublattice, as is the case for the (100) surface (Fig. 1), no translation ταβ parallel to

the surface exists and the surface is called symmetry-breaking. Generally, a (n1n2n3)

surface is symmetry-breaking if n1 + n2 + n3 is odd. Then the Hamiltonian is no

longer invariant under (3) but changes by an amount proportional to the total

number of surface sites. (One may again consider a finite system but impose

periodic boundary conditions only in the directions parallel to the surface.) Thus

the φ → −φ symmetry of the bulk system is generically broken, and the order

parameter will be nonvanishing at least locally near the surface even if T ≥ Tc.

The symmetry properties of the surface must also show up in the context of

suitable continuum (Landau-Ginzburg) models. Let φs be the value of the order

parameter at the surface. For symmetry-preserving surfaces, the surface contribu-

tion to the Landau free energy will only contain even powers of φs. By contrast,

arbitrary odd powers are expected to occur for symmetry-breaking surfaces due to

the loss of the φ → −φ symmetry. In particular, the coefficient of the linear term

may be identified with an “effective” ordering surface field g1 6= 0. Of course, in

order to estimate the magnitude of g1 and its dependence on physical parameters

such as temperature and bulk composition, the parameters of the continuum model

must be related explicitly to lattice quantities (see Sec. 3).
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2.3 Mean-field (Bragg-Williams) approximation

Owing to the spatial inhomogeneity along the z axis perpendicular to the sur-

face, exact treatments of the model (1) are very hard, and one usually has to

rely on approximate techniques such as the mean-field (MF) or Bragg-Williams

approximation. The MF equations read (with kB = Boltzmann’s constant):

mi = tanh


 1
kBT


Hi − J∑

j

(i)
mj




 , (4)

where Hi = H, Hi = H + H1 for bulk and surface sites, respectively. The sum∑(i) runs over all NN sites of i. The mean magnetizations mi vary with the index
n = 1, 2, . . . labeling the lattice planes along the z axis, but are the same on each

sublattice within a layer. Thus for the (110) surface, two variables are needed to

describe the state of each layer:

mi ≡ mαn for i ∈ layer n, subl. α , mi ≡ mβn for i ∈ layer n, subl. β . (5)

The local order parameter φn is conveniently defined as

φn ≡
1

2

(
mαn −m

β
n

)
. (6)

For the (100) surface, one may write

mi ≡ mn for i ∈ layer n , (7)

since each lattice plane belongs to a single sublattice. The definition of the local

order parameter requires more care. The obvious choice φn ≡ 1
2
(−1)n+1(mn−mn+1)

is physically reasonable but causes considerable problems in the continuum limit,

as explained in detail in [3]. It is favorable to adopt the more symmetric definition

φn ≡
1

2
(−1)n+1

[
mn −

1

2
(mn+1 +mn−1)

]
, (8)

which treats the preceding and succeeding layer on an equal footing.
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The MF equations (4) have been studied in [3] both for (110) and (100) surfaces

via the “nonlinear-mapping” technique [10]. It has been shown that in the case of

the (100) surface a nonvanishing order parameter profile appears for T > Tc. The

characteristic length scale that governs its exponential decay at large z diverges as

T → Tc. Precisely at T = Tc, the decay takes the form z−β/ν (where β = ν = 1/2

within MF theory), which is one of the signatures of the normal transition. In

the case of the (110) surface, the local order parameter vanishes for T > Tc since

mαn = mβn. Nevertheless one obtains a nontrivial magnetization profile, so that A

rich and B rich layers alternate as one moves along the z direction. However, the

length scale associated with this profile remains finite at T = Tc.

3 Continuum (Landau-Ginzburg) model

In proceeding to a suitable continuum description one must be aware of several

novel features arising for Ising antiferromagnets or binary alloys, which are not

present in simpler systems equivalent to the Ising ferromagnet. First, the Landau

expansion of the surface free energy should look different for distinct orientations,

due to the loss of the φ→ −φ symmetry for symmetry-breaking surfaces (cf. Sec.

2.2). Second, one has to take into account so-called “non-ordering” (or noncritical)

densities. In the alloy picture these are needed to account for spatially varying

profiles of, e. g., the local concentration that could not be described by the order

parameter alone.

Non-ordering densities introduce additional length scales that may compete with

the order parameter correlation length ξb. It has been shown in a study of wetting

in fcc Ising antiferromagnets that this competition may even lead to nonuniversal

critical wetting exponents, and that the number of non-ordering densities depends

on the orientation of the surface. Of course, noncritical densities do not affect

the asymptotic surface critical behavior if the bulk transition is continuous (as in
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our case of a bcc antiferromagnet), since then the diverging correlation length ξb

dominates all other length scales. However, we are interested here in phenomena

below Tc, where ξb is finite. Accordingly, length scales associated with such spatially

varying non-ordering densities may well be of the same order and important.

To become more specific, let us recall the Landau-Ginzburg model derived and

critically examined in Ref. [3] for the case of the symmetry-breaking (100) surface.

This is based on a free-energy functional of the form

F{φ} =
∫ ∞
0

dz


 c2

(
dφ

dz

)2
+ fb [φ(z)]


+ fs(φs) , (9)

where φs ≡ φ(0). The Landau expansions of the bulk and surface free-energy

densities read

fb(φ) =
a

2
φ2 +

b

4
φ4 +O(φ6) , fs(φs) = −g1φs +

c

λ
φ2s +O(φ

3
s) . (10)

As expected, arbitrary odd powers of φs occur in the expansion of fs(φs). In

view of the above discussion it is remarkable that no spatially varying nonordering

density appears in (9). The reason is that lattice planes belonging to sublattice

α and β alternate along the [100] (or z) direction. Hence the order parameter

profile uniquely determines the segregation profile and vice versa. By contrast,

the nontrivial segregation profile present for the (110) surface above Tc provides

a typical example of a spatially varying non-ordering density ψ appearing in the

corresponding free-energy functional [11]. The “segregation field” H1 then couples

linearly to ψ, but no terms linear in the local order parameter and thus no ordering

surface field are present.

Deriving the continuum theory from the lattice model has the virtue of re-

lating the “phenomenological” coefficients in (10) explicitly to the “microscopic”

parameters:

K ≡
4|J |

kBT
, h ≡

H

4|J |
, h1 ≡

H1

4|J |
, (11)
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which are dimensionless measures of the spin coupling strength and the bulk and

surface magnetic fields. The “bulk” coefficients a, b, and c are independent of

surface properties and depend on K and h only: a = a(K, h) etc. As usual, a

varies linearly with the reduced temperature t = (T − Tc)/Tc near Tc (at fixed

magnetic field h), whereas b and c are positive constants to lowest order in t (see

[3]). The “surface” parameters are found to be:

λ(K, h) = 1 , g1(K, h, h1) = h1 +mdis(K, h) , (12)

where mdis = mdis(K, h) is the magnetization of the disordered state. The latter is

thermodynamically stable only for T > Tc. The surface field h1 enters only in the

“effective” ordering field g1. The so-called extrapolation length λ (whose inverse

c0 ≡ 1/λ is conveniently called surface enhancement) is positive as it should be if

the surface interactions are not enhanced.

In order to better understand the expression for g1 it is helpful to recall some

general symmetry properties of the Ising Hamiltonian (1) which should be respected

by the continuum theory. If one replaces h and h1 by its negative, the mean

magnetizations and the local order parameter (6) behave asmi →−mi, φn →−φn,

implying that the ordering surface field should change sign, too:

g1(K,−h,−h1) = −g1(K, h, h1) . (13)

For bulk field h = 0 and arbitrary h1, the Ising antiferromagnet is exactly equivalent

to an Ising ferromagnet since flipping all Ising spins on one sublattice and changing

the sign of K leaves the partition function invariant. For the semi-infinite ferro-

magnet, however, an ordering field g1 is merely equivalent to a surface magnetic

field acting on the spins of the first layer and one easily finds [10]:

g1(K, 0, h1) = h1 . (14)

The expression (12) fulfills both (13) and (14). That the bulk magnetization mdis

of the disordered phase comes into play can be understood as follows. For T > Tc,
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the order parameter profile should vanish identically if g1(K, h, h1) = 0. Hence

the layer magnetization profile mn must be a constant, mn ≡ mdis(K, h). By Eq.

(4), the molecular fields acting on surface and bulk spins are H + H1 − 4|J |m2

and H − 4|J |(mn−1 − mn+1), respectively. Thus the flat profile is a solution if

and only if h1 = −mdis(K, h). Below Tc a thermodynamically unstable solution

mn ≡ mdis (i. e. φn ≡ 0) still exists if and only if h1 = −mdis(K, h). In order

that this unstable solution survives the continuum approximation, one again has

to demand that g1(K, h, h1) = 0 if h1 = −mdis(K, h).

4 Wetting phase diagrams

The physical picture behind the wetting behavior at a (100) surface is the

following. Below Tc, two ordered bulk phases ±φb coexist. If, e. g., the effective

ordering field g1 is positive, the surface favors the phase φb > 0, i. e. A atoms tend

to occupy sublattice α planes n = 1, 3, . . . while B atoms reside preferentially on

the β planes n = 2, 4, . . .. However, it may occur that deeper in the bulk the role

of the two sublattices is interchanged and the order parameter assumes the value

−φb there. Then an antiphase domain boundary separating two regions of ordered

phase appears. Antiphase boundaries always occur in real alloys below the ordering

temperature. They are the analogs of domain walls. Now one may ask how the

thickness of this “adsorbed” layer of bulk phase behaves when the temperature is

varied. If the interface stays within a finite distance from the surface for T < Tw

while moving arbitrarily away into the bulk for T > Tw, a wetting transition takes

place at Tw = Tw(h1, h). The thickness of the layer may either grow continuously as

T ↑ Tw (second-order wetting transition), or jump from a finite value below Tw to

infinity for T ≥ Tw in a first-order transition. Within standard wetting terminology

we thus study complete wetting at coexistence [7].

We have calculated the wetting phase diagram in the space of physical param-
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eters t = (T − Tc)/Tc (reduced temperature), h, and h1. To this end we employed

the full expressions for the bulk and surface Landau free energies fb and fs in (9)

to be found in [3], and used the standard equal-area construction to locate the

transitions [12]. Of course, a description in terms of continuum mean-field theory

is only sensible above the roughening temperature TR [13], where TR '
1
3
Tc for

h = 1 [9]. For T < TR the growth of the wetting layer proceeds via an infinite

sequence of layering transitions which are outside the scope of the continuum the-

ory. Fig. 2 shows two representative phase diagrams at fixed bulk fields h = 1

and h = 1.5. The tricritical point separating continuous and first-order transition

lines on the right branch of the phase diagram (where g1 > 0) is found to depend

strongly on the bulk field for h larger than ≈ 1.5. Critical wetting then occurs

over a wide temperature range. (If |h| > 2, the ordered phases are energetically

unstable at T = 0 and the bulk phase transition ceases to exist.) In order to inter-

pret Fig. 2 an exact groundstate analysis may be carried out similar to the one in

[13], from which one easily finds that complete wetting already occurs at T = 0 if

|h1| ≥ 1. Thus continuum mean-field theory certainly fails if wetting transitions at

finite temperatures are predicted for |h1| > 1. In this case one has to resort to the

discrete mean-field theory for a more accurate description of the low-temperature

part of the phase diagram.
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Figure captions

Fig. 1. Disordered (A2) and ordered (B2) structures of a bcc binary (AB)

alloy. Black and white circles denote A and B atoms (or sublattice α and β sites),

respectively. The hatched planes represent the (100) and (110) surface orientations.

Fig. 2. Wetting phase diagrams at fixed bulk fields h = 1 and h = 1.5, exhibiting

continuous (full lines) and first-order wetting transitions (dashed lines), where t =

(T −Tc)/Tc denotes the reduced temperature. One has g1 > 0 (g1 < 0) to the right

(left) of the dashed-dotted lines where g1 = 0.
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Figure 1 (Leidl/Drewitz/Diehl)
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Figure 2 (Leidl/Drewitz/Diehl)
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